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Abstract

Purpose – This paper aims to perform a comparative study between capabilities of two numerical
schemes from two main branches of numerical methods for solving hyperbolic conservation
equations.
Design/methodology/approach – The accuracy and performance of a newly developed high-
resolution central scheme vs a higher-order Godunov-based method are evaluated in the context of
black-oil reservoir simulations. Both methods are modified enabling study of applications that are not
strictly hyperbolic and exhibit local linear degeneracies in their wave structure.
Findings – The numerical computations show that while both schemes produce results with
virtually the same accuracy, the Godunov method reproduces slightly more accurate results at the
expense of calculation of eigen-structures.
Research limitations/implications – The paper investigates only one dimensional problems, but
the idea can be easily extended to multi-dimensional problems.
Practical implications – The paper shows the strengths and weaknesses of two practical
numerical methods.
Originality/value – Such comparative study has not been published elsewhere and in particular, the
performance of numerical methods on simulating hysteresis effect in hydrocarbon reservoirs has not
been investigated in detail before.
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Introduction
The multi-phase flow of multi-component fluids in porous media has been investigated
extensively in recent decades in order to analyze the oil recovery process and plan for
more economical exploitation (Watts, 1997). In this respect various mathematical
models describing reservoir phenomena ranging from single-component single-phase
flows (Aronofsky and Jenkins, 1954) to compositional multi-phase (Class et al., 2002)
flow models have been used. Also, the effect of matrix deformation on the behavior of
multi-phase flows in reservoirs has been studied extensively and numerical techniques
were developed to handle such cases (Lewis and Sukirman, 1993; Ghafouri and Lewis,
1996; Pao and Lewis, 2002).

Analysis of multi-phase multi-component flow in a reservoir is a challenging task.
This is partly due to the physical and geometrical complexities that must be taken into
account and partly due to the multi-scale nature of the reservoir physical properties.
Study of such problems can be achieved by using appropriate numerical methods on
carefully refined grids. This often makes the analysis computationally highly
demanding. Such computations typically require time-steps as small as a fraction of a
day to simulate processes within a specific time span in the order of several years.
Moreover, the heterogeneity in physical properties of the rock frequently leads to

The current issue and full text archive of this journal is available at
www.emeraldinsight.com/0961-5539.htm



HFF
19,2

126

discontinuities in the coefficients present in the formulation and cause mathematical
difficulties. To this end, computationally efficient and accurate methods are vital.

The black-oil model is particularly useful in hydrocarbon reservoir simulations as it
can model both the primary and secondary hydrocarbon recovery processes. The
model can feature a three-component, three-phase flow in porous media and take into
account the fluid compressibility and also the mass transfer between different phases
using minimum compositional data.

The set of partial differential equations, describing this model are strongly non-
linear and coupled. Trangenstein and Bell (1989) showed that these equations can be
written as two separate sets of inherently different partial differential equations. One
set contains pressure and velocity components of the flow as its primitive variables and
has a parabolic nature, whereas the other system of equations describes conservation
of mass for the fluid components and has a hyperbolic nature. Although
computationally intensive, the first parabolic set does not pose a great challenge to
numerical methods. Numerical solution of the hyperbolic set however, requires special
care because it exhibits mathematical degeneracy and its flux function is non-convex.
In some situations, a particular phase may vanish, even though all chemical
components are present. This situation is termed as under-saturation that leads to local
linear degeneracies and loss of strict hyperbolicity in the mathematical structure of the
system (Trangenstein, 1988). The loss of strict hyperbolicity poses a significant
difficulty to most numerical techniques. Numerical solution of this hyperbolic system
is the main focus of the current paper.

For several years, the use of Godunov-type schemes has been a natural choice to
solve these complex hyperbolic equations. This is mainly due to the ability of the
method to construct the flux functions by the use of characteristics thereby being able
to detect the local linear degeneracy and non-strict hyperbolicity conditions. In this
approach (Godunov, 1959), the numerical fluxes are determined by computing the left
and right states at each cell interface, solving a local Riemann problem for these two
states and evaluating the flux along the appropriate characteristics. Trangenstein
(1988) presented a rather complete review on different schemes belonging to this class
of methods. Osher and Solomon (1982) extended the Godunov method to solve a
genuinely hyperbolic system of conservation laws. Based on their work, Bell et al.
(1989) and Collela (1990) made modifications to a second-order form of the scheme, in
order to use it in the field of oil reservoir simulation. Later, Dicks (1993) and
Bergamaschi et al. (1998) extended the preceding schemes to two-dimensional
problems with heterogeneous properties. In all these papers, the local Riemann
problem is treated using Engquist–Osher (Engquist and Osher, 1980; 1981) flux
estimation method, which is far less expensive than the corresponding exact Riemann-
problem flux calculation. Although these methods are computationally expensive due
to the use of exact eigen-structures, a stability analysis shows that this weakness can
be alleviated by using relatively large time-steps (Dicks, 1993). This approach was
adopted by Bell et al. (1989) to deal with the cases of eigenvector deficiency which arise
in the complex reservoir problems.

Another important branch of numerical methods used for conservation laws is the
central scheme, which has a long history in compressible flow simulation. The
pioneering work of Friedrichs and Lax (1971) is known as the beginning of the central
methods in which a piecewise constant approximation of the solution is used. Several
attempts were made to achieve a practical method of this kind with a reasonable
numerical dissipation. Recently, the method has been modified so that its numerical
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dissipation is reasonably low while retaining its relative simplicity and ease of
implementation. Nessyahu and Tadmor (1990) introduced a second-order successor to
the Lax-Friedrichs scheme keeping the advantage of being Riemann-solver free. Their
work was extended to higher orders by Liu and Tadmor (1998) and Huynh (1995) and
to higher dimensions by Arminijon et al. (1995) and Jiang and Tadmor (1998).

In fact, the first developments of Lax-Friedrichs-based schemes for reservoir
simulation including higher order formulations were presented by Edwards (2004,
2005).

Other types of high-resolution central schemes also exist. Two of the most popular
central schemes are the convective-upwind split-pressure scheme due to Jameson
(1995a, b) and the scheme of Liu and Osher (1998), both of which being semi-discrete
and achieving high resolution without using a Riemann solver. These schemes have
their main application in the field of computational aerodynamics.

The numerical dissipation of all of the above mentioned central methods is sensitive
to the time-step size thus smearing discontinuities at low Courant-Friedrichs-Lewy
(CFL) numbers. To remedy this deficiency, Kurganov and Tadmor (2000) recently
introduced a modification to the Nessyahu–Tadmor scheme, making its numerical
diffusion independent of the time-step size and of order O(h2r�1) where h represents the
mesh size and r is the order of the scheme. Another attractive aspect of this method in
the field of reservoir simulation is that its semi-discrete form enables the method to
handle degenerate conservation laws without using ad hoc or extra treatments
(Kurganov and Tadmor, 2000). Taking advantage of this feature, Naderan et al. (2007)
have applied three types of central schemes, one of which being the Kurganov–Tadmor
scheme, to one-dimensional black-oil problems, and compared their performance in
this context. In another work, the KT scheme was used for simulation of two-
dimensional black oil reservoir problems by Naderan et al. (2006).

The accuracy of the methods become more important when there are additional
sources of non-linearities in the problem. One of these cases which is of practical
importance is the existence of relative permeability hysteresis, which introduces an
additional history-dependent nonlinearity. This situation is particularly difficult as
errors accumulate and grow significantly in time. There are various hysteresis models
for relative permeability (Aziz and Settari, 1979; Killough, 1976; Carlson, 1981; Lenhard
and Parker, 1987; Lenhard and Oostrom, 1998; Larsen and Skauge, 1998) with varying
degrees of accuracy. Spiteri and Juanes (2004) give a comparison of the suitability of
different hysteresis models from a practical point of view. In this work, a typical model
proposed by Aziz and Settari (1979) is used to demonstrate the importance of accurate
treatment of this effect.

In the present work, a comparison between the performance of a higher-order
Godunov method and the Kurganov–Tadmor high-resolution central scheme, applied
to the one-dimensional black-oil model, is carried out. Three benchmark problems each
showing different aspects of the reservoir simulation problems are solved. The first test
case investigates flow in a saturated reservoir. The second test case studies the ability
of the two methods to handle a mixed saturated/undersaturated reservoir and the third
uses a hysteresis model for the relative permeability function to simulate a complex
water alternating gas (WAG) injection, a typical case of cyclic flow regime. Some of the
important numerical aspects, such as the rate of convergence and the quality of
discontinuity capturing with the grid spacing size are compared. In addition, the
influence of reducing CFL number on the results is investigated. In the following, first a
brief review of the governing equations for the black oil model is given and then details
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of the numerical methods used in this work are described. Finally, the above mentioned
one-dimensional benchmark problems are solved and some concluding remarks are
presented.

Governing equations
Equations governing the black oil model can be formulated in several forms. The form
chosen here is based on the work of Trangenstein and Bell (1989), which uses a volume
error discrepancy for derivation of the pressure equation. For the sake of brevity, the
details of the assumptions and derivation process are not discussed and only a brief
review of the equations is presented.

In the black-oil model, the reservoir fluid is considered to be composed of three
pseudo-components, which are oil, gas and water, distributed into three phases
consisted of liquid, vapor and aqua. Neglecting the capillary effects, all phases have
the same pressure, p. The mass of components per pore volume is represented by vector
z ¼ fzo; zg; zwgT and the volume of each phase per pore volume by u ¼ ful ; uv; uagT.
Here, subscripts o, g and w refer to the oil, gas and water components while subscripts
l, v and a refer to the liquid, vapor and aqua phases, respectively. As in general ujs do
not sum to one, saturations are defined as the fractions of the total fluid volume
occupied by each of the three phases

s ¼ u

eTu
; ð1Þ

where e ¼ f1; 1; 1gT .
The vector of velocities is defined as

v ¼ fvl ;vv;vagT ;

in which, when neglecting gravitational effects,

vj ¼ ��j rpð Þ; j ¼ l; v; a ð2Þ

are the phase velocities. Also, �j ¼ Kkrj
=�j is the mobility of phase j where K is the

rock permeability, and krj
and �j are the relative permeability and dynamic viscosity of

phase j, respectively.
Summing up both sides of Equation (2) for all phases gives the total velocity

vt ¼ vTe ¼ �� rpð Þ where � ¼
P

j¼l;v;a �j is the total mobility. Defining fj ¼ �j=�,
the phase velocities can be written in terms of the total velocity, vj ¼ fjvt .

The equation governing pressure distribution in the domain is derived so as to
correct the error in the state equation (eTu ¼ 1) (Trangenstein and Bell, 1989). This
gives a parabolic equation in the form of

��eT @u

@p
þ eTu

@�

@p

� �
@p

@t
þ eT @u

@z
r � ðRB�1vÞ ¼ eTu� 1

�t
� ð3Þ

where � is the porosity and t is time.
The matrix B ¼ diagfBl ;Bv;Bag, is the volume formation factor which is the ratio

of the volume of each phase at reservoir condition to the volume of the same phase at
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the stock tank condition (STC). In the absence of thermal effects, Bs are only functions
of the phase pressure.

The matrix R is the solution ratio, describing the distribution of components among
phases. Rij is defined as the ratio of the amount of component i in phase j to the amount
of principal component of phase j. By definition, the principal component of a phase is
the component present in that phase at STC. Specifically, oil, gas and water are the
principal components of the liquid, vapor and aqua phases, respectively.

The model considered by Trangenstein and Bell (1989) considers the solubility of
gas in both oil and water and evaporation of oil, so that

R ¼
1 Rv 0

Rl 1 Ra

0 0 1

2
64

3
75 with Rl ¼

zgl

zol

; Rv ¼
zov

zgv
and Ra ¼

zga

zwa
ð4Þ

where zij refers to the mass of component i in phase j per pore volume. In this work, the
above form for R is adopted.

The transport of components is governed by the mass conservation law which
yields

@�z

@t
þr � RB�1v

� �
¼ 0: ð5Þ

Here, the relation between u and z is given by

u ¼ BTz; ð6Þ

where T is a matrix such that TR ¼ I.
When all three phases are present, the flow is termed saturated. However, there is a

possibility that all of the gas content is dissolved in the liquid phase, thus, eliminating
the vapor phase. This situation is called under-saturation, which shows that the
reservoir pressure is higher than the liquid bubble pressure and the liquid phase has
the capacity to swallow more gas. In this case, R, T and B matrices need to be
modified but the general forms of equations (3), (5) and (6) do not alter. This is the main
reason for choosing this formulation as the base of the present work, since it permits a
unified treatment of the saturated and under-saturated cases. For a detailed discussion
of the under-saturated cases, consult (Trangenstein and Bell, 1989).

Hysteresis phenomenon
The hysteresis phenomenon corresponds to the situation when distinct curves exist for
imbibition and drainage processes. This effect becomes significant in processes with
strong flow reversals. Such situations occur in the case of WAG injection, in which the
gas phase is trapped during water flooding after a gas flood.

The hysteresis effect can be visualized on a relative permeability diagram as shown
in Figure 1 for a oil–gas system. Here, gas is the non-wetting phase while oil acts as a
wetting phase. As it can be seen in this figure, the drainage curve for oil falls above the
imbibition curve. If the drainage process is stopped at point A, and the process
switches to the imbibition process, a path defined by AB is followed by the relative
permeability of the gas phase shown here by subscript v. The figure also shows some
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important parameters which are used in the modelling of this effect. The actual values
used in this paper are given in appendix.

To include the hysteresis effects, the model described by Coats (Aziz and
Settari, 1979) is used. All hysteresis models add some difficulties to the numerical
solution of the multi-phase flow problems via introducing a history dependent
non-linear function for the vapor phase relative permeability. It is emphasized that the
relative permeability is the source of strong non-linearity in the black-oil model by
itself.

Referring to Figure 1, the normalized relative permeability of vapor phase
krv ¼ krv=krvro ¼ f ðsvÞ is defined as a function of sv which is given by

sv ¼
sv � svcr

1� som � swc � seff
vc

: ð7Þ

In this definition, som and swc stand for the liquid and aqua phase residual saturations
and svcr is the critical vapor saturation in the drainage cycle. Also, in the definition of
krv, the quantity krvro refers to krv computed at s ¼ 1� swc � som. The effective residual
saturation seff

vc is obtained from

seff
vc ¼ !s�vc þ ð1� !Þsvcr; ð8Þ

where

! ¼ sA
v � sv

sA
v � s�vc

; ð9Þ

and the current residual vapor saturation, s�vc, is calculated as a function of the
maximum vapor saturation sA

v reached during the drainage cycle

s�vc ¼ svc
sA

v

1� som � swc
: ð10Þ

When sv is increasing, ! is set to zero, seff
vc ¼ svcr and krv follows the original drainage

curve. When sv is decreasing, ! is set to 1 and seff
vc becomes s�vc. When sv reaches s�vc,

shown by point B in Figure 1, one must set krv ¼ krv ¼ 0.

Figure 1.
Hysteresis of krv

according to the Coats
model
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Numerical method
A finite-volume approach is used for the spatial discretization of equations (3) and (5).
For a one-dimensional domain of length L, the nodal points and grid spacing are
defined by

xi ¼ ði � 1Þ�x i ¼ 1; 2; . . . ; n

�x ¼ L

n� 1
:

ð11Þ

The control volume corresponding to node i is the region enclosed by faces
xi�1=2 ¼ xi ��x=2and xiþ1=2 ¼ xi þ�x=2. Integrating equation (3) on control volume
i gives

ðð
�
@p

@t
dx dt þ

ðð
eTBT

@

@x
ðRB�1vÞdx dt ¼

ðð
�dx dt; ð12Þ

where

� ¼ ��eT @u

@p
þ eTu

@�

@p
;

and

� ¼ eTu� 1

�t
�:

Assuming that p is constant over the control volume, RB�1becomes independent of x,
simplifying equation (12) as

�i pnþ1
i � pn

i

� �
�xþ�t vnþ1

t

� �
iþ1=2
� vnþ1

t

� �
i�1=2

h i
¼ �i�x�t ð13Þ

The coefficients � and � are evaluated at time tn while the total velocities are evaluated
at time tnþ1 , resulting in an implicit equation for pressure. Note also that the vector
notation for the total velocity is not required any more as the equation is written in one
dimension.

The above implicit equation can be solved in various ways. Here, a relaxation
method is adapted. To do so, pnþ1;k

i is defined as the kth iteration value for pnþ1
i .

Defining the residual of the discretized equation in iteration k as

resk
i ¼ �iðpnþ1;k

i � pn
i Þ�xþ�t ðvnþ1;k

t Þiþ1=2 � ðv
nþ1;k
t Þi�1=2

h i
� �i�x�t; ð14Þ

the iteration formula for pressure becomes

pnþ1;kþ1
i ¼ pnþ1;k

i � !ðresÞki ; ð15Þ

in which ! is the relaxation factor. Numerical experiments showed that a value ! ¼ 1:1
yields a good compromise between the convergence rate and stability though it might
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not be an optimum value. Interface velocities vnþ1;k
t;iþ1=2 are calculated by discretizing the

total velocity equation as

vnþ1;k
t;iþ1=2 ¼ ��iþ1=2

pnþ1;k
iþ1 � pnþ1;k

i

�x
: ð16Þ

To deal with non-linearities, �iþ1=2 is calculated using harmonic averaging as

�iþ1=2 ¼
2�i�iþ1

�i þ �iþ1
: ð17Þ

It is assumed that convergence is achieved for the non-linear iteration loop when
kreskk � 10�6. The computed pressure field is then used for the rest of calculations
within the time-step.

For the component transport, integration over the control volume using an explicit
time approximation gives

znþ1
i � zn

i ¼ �
�t

�i�x
½hiþ1=2 � hi�1=2� ð18Þ

where hi�1=2 is the flux vector RB�1v evaluated at the interface i � 1=2. h can be
written as a function of the conserved variables on the two sides of the interface. The
above explicit formulation results in the first-order methods in time. Below, two flux
estimation techniques used in this work are presented. The general solution algorithm
is shown in Figure 2.

Figure 2.
Flowchart of the solution
algorithm
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The CFL condition for the numerical methods used in this work is computed on the
basis of the maximum wave speed, �max, and a global CFL number, C, at each face,
using

�max�t

�x
< C: ð19Þ

Kurganov–Tadmor scheme
The KT method is a higher-order central scheme based on averaging over the non-
smooth Riemann fans. Unlike most of the other Lax–Friedrichs-based schemes which
use a one-stage reconstruction process, the KT method consists of two linear
reconstruction stages. First, new cell average values are computed on a nonuniform
staggered grid. The values are then used to advance the solution in time. Finally, in the
second stage, the solution is converted back into the original computational grid. One
advantage of the KT method over the Nessyahu and Tadmor (1990) is that it avoids the
use of associated staggered grids. Another major advantage of the KT method is that it
separates the treatment of smooth and non-smooth regions of the solution thereby
generating less numerical diffusion. This is achieved by using staggered cells, which
are just large enough for Riemann fans to propagate inside the domain of averaging. In
most Lax–Friedrichs-based schemes, this is not the case and as a result, it is assumed
that the discontinuity propagated from the cell interface has swept the whole region of
integration. When this assumption is violated, excessive numerical dissipation are
introduced into the solution especially near discontinuities and rarefaction tips.

Kurganov and Tadmor formulated their scheme in both semi and fully-discrete
forms. Here, the semi-discrete form is used since it is already in the conservation form.
Nevertheless, the same expression for face flux can be obtained from the fully-discrete
form with some algebraic manipulations. This method has an artificial diffusion of
order Oð�x3Þ and its numerical flux is given by Kurganov and Tadmor (2000)

hiþ1=2 ¼
1

2
½hþiþ1=2 þ h�iþ1=2� �

1

2
aiþ1=2ðzþiþ1=2 � z�iþ1=2Þ ð20Þ

in which zþ
iþ1=2 ¼ ziþ1 ��x=2zx;iþ1, and z�iþ1=2 ¼ zi þ�x=2zx;i are the right

and left states, respectively, and h�iþ1=2 ¼ hðz�iþ1=2Þ. The variable derivatives are
evaluated as follows:

zx;i ¼ minmod
ziþ1 � zi

�x
;
zi � zi�1

�x

� �
;

zx;iþ1 ¼ minmod
ziþ2 � ziþ1

�x
;
ziþ1 � zi

�x

� �
;

where the minmod limiter is defined as

minmodðx; yÞ ¼
minðx; yÞ x > 0 and y > 0
maxðx; yÞ x < 0 and y < 0
0 xy < 0

8<
: ð21Þ
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Also, aiþ1=2 is the spectral radius of @h=@z with z 2 Cðz�1þ1=2; z
þ
1þ1=2Þ where C is a

path that connects the two states z�iþ1=2 and zþ
iþ1=2 in the phase space via Riemann fans.

Since the flux function is non-convex and complicated to evaluate, it is not easy to
find aiþ1=2 accurately. Dicks (1993) used the arithmetic mean of the left and right states
to approximate the eigenvalues between the two states, as suggested by Bell et al.
(1989). This approximation is used here to calculate the spectral radius of @h=@z which
is used as an estimate for aiþ1=2, in order to be consistent with the higher order
Godunov scheme, described later. Numerical experiments showed that this is
sufficiently close to the actual maximum wave speed.

Kurganov and Tadmor (2000) recovered the Rusanov scheme which is a first-order
method by setting the extrapolation slopes (i.e. zx;i and zx;iþ1) in their computations
equal to zero. They showed the results obtained by this first-order version in some of
their test cases and concluded that in some cases it performs better than the second-
order Nessyahu–Tadmor scheme. However, in all their tests and specially in strongly
degenerate ones, their second-order scheme outperformed both the Rusanov and
Nessyahu–Tadmor schemes.

For a more elaborate description of the above method consult Kurganov and
Tadmor (2000). Also, a detailed description of the method for solving reservoir
problems using the Black-oil model was given in reference Naderan et al. (2007).

Higher order Godunov scheme
An alternative approach to solve the conservation equation (18) is the use of a higher
order Godunov-based scheme. Below a higher order Godunov scheme for such a
system of equations is presented. Beginning with a piecewise constant approximation
for z within each computational cell, the ‘‘centered’’, ‘‘left’’ and ‘‘right’’ slopes (variation
of z per unit variation of x) are computed. These slopes are expanded in terms of the
right eigenvectors rk of the Jacobian matrix @h=@z, as

1

2
ðzjþ1 � zj�1Þ ¼

Xm

k¼1

�c
krk;

zjþ1 � zj ¼
Xm

k¼1

�r
krk;

zj � zj�1 ¼
Xm

k¼1

�l
krk;

ð22Þ

where m is the number of equations. To construct a second-order method, an
approximation to the slope @z=@x is needed which must be monotonized in order to
prevent oscillations near discontinuities. Such a monotonized slope is defined by

�z ¼
Xm

k¼1

�krk; ð23Þ

where the expansion coefficients from equation (22) are ‘‘limited’’ to give

�k ¼ minðj�c
kj; �j�l

kj; �j�r
kjÞsignð�c

kÞ; if �r
k�

l
k > 0

0; otherwise

�
ð24Þ
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in which � is a constant parameter, introduced by Van Leer (1979) and is usually set
to 2. It should be noticed that using this value, in regions of smooth flow, �z is given
by centered differences, whereas near extreme points, �z is set to zero.

The left and right states at the grid cell interfaces are computed according to Dicks
(1993)

zL
jþ1=2 ¼ zn

j þ
1

2
Rj I � �t

�x
�j

� �
�j; ð25Þ

zR
jþ1=2 ¼ zn

jþ1 �
1

2
Rjþ1 I þ �t

�x
�jþ1

� �
�jþ1; ð26Þ

where � is the diagonal matrix of eigenvalues of H and R is its respective matrix of
eigenvectors.

Exploiting these left and right states, a Riemann problem at the cell interface is
solved. This is achieved using a generalization of the Engquist–Osher numerical flux
(Engquist and Osher, 1980, Engquist and Osher, 1981). First a path is constructed from
zL to zR that approximates the phase space solution to the Riemann problem, and then
a numerical flux is computed. The approximate phase space solution could be
considered as a decomposition of the jump from zL to zR into m jumps corresponding
to each of the wave modes. To achieve such a decomposition, first an expansion state
as the average of the left and right states, �zz ¼ 1

2 ðzL þ zRÞ is calculated and then the
generalized eigenvectors at this state are evaluated as �RRk ¼ rkð�zzÞ. The jump between
two states zL and zR can be decomposed in terms of linearly independent vectors �RRk.
Using this decomposition, m � 1 intermediate states between zL and zR can be formed
as

zk ¼ zL þ
Xk

i¼1

���i
�RRi; 1 � k < m ð27Þ

where each of them is related to a wave mode. In the Engquist–Osher (EO) method, the
numerical flux is written as a flux at a reference state plus an integral correction term.
First, the mean speed is defined as

� ¼ ðhðz
LÞ � hðzRÞÞ � ðzL � zRÞ
kzL � zRk2

ð28Þ

and the reference state is given by

zref ¼ zL; if � � 0
zR; otherwise

�
ð29Þ

The above choice of reference state is equivalent to using an upwind direction and the
sign of � is a measure of the sign of eigenvalues of matrix H. Finally, the approximate
EO flux at both reference states depending on upwind direction is calculated according to
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hEOðzL; zRÞ ¼ hðzLÞ þ
Xm

k¼1

ð ���k

0

minð���k; 0Þd�
� �

�RRk ð30Þ

or

hEOðzL; zRÞ ¼ hðzRÞ �
Xm

k¼1

ð ���k

0

maxð ���k; 0Þd�
� �

�RRk ð31Þ

Here, ���k is an approximation to the wave speed along the line segments ���k which are
defined as the paths from zk�1 to zk that altogether cover the whole path from zL to zR.
The preceding integrals are computed by representing the wave speeds, ���k, as cubic
polynomial interpolation along the path ���k. A cubic polynomial is needed in order to
consider the inflection points in the physical flux function.

In the black-oil model, the system of mass conservation equations may exhibit lack
of strict hyperbolicity and genuine non-linearity, which can be treated by adding an
extra numerical dissipation term as described in detail by Bell et al. (1989).

Test cases
To assess the performance of the above mentioned numerical methods, three test cases
are studied. For each test, the results obtained using both the Higher order Godunov
(HG) and the Kurganov–Tadmor (KT) methods are shown. All fluid and rock
properties were taken from Trangenstein and Bell (1989), and are given in appendix.
All test cases solved in this paper are one-dimensional. A comparative study on the
performance and accuracy of the HG and KT methods in two-dimensional problems
with and without gravity effect can be found in (Naderan et al. 2006). Also, Edwards
(2004, 2005) has investigated the performance of the Lax-Friedrichs-based schemes
when eigenvalues change sign in two-dimensional problems involving gavity.

The first test case involves injection of a saturated mixture into a saturated
reservoir. The initial reservoir pressure is 1,800 psi, whereas injection and production
take place at 2,000 and 1,600 psi, respectively. This test case signifies the effect of
composition variation on the flow. The computational domain is set to 0 � x � 1;000 ft
and the initial reservoir and injection compositions are

zres ¼
0:703
70:3

0:0502

8<
:

9=
;; zinj ¼

0:0414
66:23
0:497

8<
:

9=
;: ð32Þ

The second test case is the water flooding in an under-saturated oil reservoir. The
initial, injection and production pressures are 3,500, 4,000 and 3,000 psi, respectively.
This test case shows the effect of pressure variation on the flow and composition. The
domain is the same as the first test case and the initial reservoir and injection
compositions are

zres ¼
0:646
116:29

0:0

8<
:

9=
;; zinj ¼

0:0
0:0
1:27

8<
:

9=
;: ð33Þ
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Both of these benchmark problems were taken from Trangenstein and Bell (1989). It
should be emphasized that the results obtained by HG method are virtually the same
as those shown in reference Trangenstein and Bell (1989), therefore the results were
labelled as the HG results.

The third test case is a WAG injection and aims at assessing the performance of the
schemes in a much more complex flow regime. The problem consists of three cycles of
water-gas injection, where each cycle consists of injection of water, followed by
injection of gas, with each injection having a period of 90 days. The computational
domain and the initial, injection and production pressures are the same as the second
test case. The initial reservoir and injection compositions are

zres ¼
0:761
0:0

0:393

8<
:

9=
;; zinj;w ¼

0:22
0:0

1:097

8<
:

9=
;; zinj; g ¼

0:0625
166:17
0:303

8<
:

9=
;; ð34Þ

where zinj;w and zinj; g refer to composition of injected fluid in water and gas injection
cycles, respectively.

This test case involves alternating flow in which hysteresis effect in the relative
permeability curves plays an important role. This makes the test case a history
dependent and highly nonlinear problem, in which any small initial error leads to a
significant difference in the final result. To account for hysteresis, the model described
by Aziz and Settari (1979) is used and its parameters are given in appendix.

Results and discussion
Test case 1
For this test case, no analytical solution exists. Trangenstein and Bell (1989) showed
that the solution consists of two wave fronts, one slow-running wave between the oil
and water components and one fast-running wave between the gas and oil
components. The problem was solved on four grids with 50, 100, 200 and 400 nodes to
examine the mesh dependency of each method with a CFL number of C ¼ 0:45 for the
KT method and C ¼ 0:9 for the HG method. In practice, these translate to the minimum
and maximum time-step sizes about �t ¼ 0:05 (days) and 0.25 (days), respectively.

The results of computed saturation profiles are shown in Figure 3 after t ¼ 150 days
injection. As it can be seen, there is a rarefaction starting at x ¼ 50 ft, continuing up to
a shock at x ¼ 150 ft indicating the presence of a local linear degeneracy due to
existence of a slower wave speed which is resolved more sharply by the HG method,
even though both methods predict roughly the same shock strength. Further
downstream, the faster wave mode forms a rarefaction at x ¼ 425 ft, connecting to a
shock at x ¼ 725 ft. Again the solution by the HG method is a bit sharper as a result of
exact calculation of eigenvalues in contrast to the KT method that considers only one
typical approximate wave speed for all phases denoted by a, as mentioned earlier. It is
also noticeable that as the grid is refined the HG method converges to a mesh-
independent solution more rapidly than the KT method. The resolution of the HG with
100 grid points is acceptable while the KT method reaches to a suitable accuracy by
using 200 grid points.

Test case 2
Like the previous test case, there is no analytical solution for this test case. As expected
the solution exhibits, a front between water and oil which starts from the injection well
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and progresses towards the production well. As the reservoir pressure drops, near the
production well, the flow becomes saturated and free gas is produced, which introduces
another front.

Results (Figure 4) show that, there is a contact rarefaction shock pattern due to
existence of a faster running wave. The rarefaction-shock pattern is resolved with
approximately the same accuracy by both methods, while the HG method exhibits a
better accuracy in resolving the contact discontinuity. This is due to the fact that
calculation of the eigen-structure by the HG method is more accurate. Again, it is seen
that the HG method converges faster to a mesh-independent solution.

With regard to the sensitivity of the methods to CFL reduction, it was shown in
reference Naderan et al. (2007) that the KT method is virtually unaffected by the
variations in CFL number. A similar test was conducted for the HG method in the
present work and the results confirmed that the same is true for this method. Hence, it
can be concluded that both methods are equally insensitive to the reduction of CFL
number.

Test case 3
In this test case, the capability of both KT and HG methods in capturing complex
features occurring in the reservoir is examined. As it was mentioned before, in this test
case the hysteresis effect is considered and the injection of water and gas is performed
in alternating stages. The result of simulations are shown in Figures 5, 6 and 7. It is

Figure 3.
Test case 1: saturation
profiles after 150 days for
various number of grid
points: (a) 50, (b) 100, (c)
200 and (d) 400 points
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remarkable that the results obtained by the HG and KT methods are very close to each
other even in the regions with sharp gradients.

The variation of liquid and vapor phase saturations with time for a point inside the
reservoir (x ¼ 250 ft) is shown in Figure 5. As can be seen, there are three humps in this

Figure 4.
Test case 2: saturation

profiles after 125 days for
various number of grid

points: (a) 50, (b) 100, (c)
200 and (d) 400 points

Figure 5.
Test case 3: variation of

saturation profiles at
x ¼ 250 ft with time: (a)

liquid phase and (b) vapor
phase
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profile indicating three stages of gas injection. It is also noticed that due to gas
trapping effect the peak of consecutive injection stages increases for the gas phase and
decreases for the liquid phase.

The results shown in Figure 6 corresponds to the saturation profile of the three
phases across the reservoir at t ¼ 246 days and t ¼ 350 days. These profiles exhibit
the propagation of injected water and gas fronts, pushing the oil resident in reservoir,
towards the production well. It is noticeable that the accuracy of both the KT and HG
methods are comparable in capturing sharp fronts and discontinuities.

Finally, in Figure 7 the effect of WAG on the sweep efficiency and oil cut curves are
shown. The sweep efficiency is defined as the ratio of extracted oil to the total amount
of oil in place and the oil cut curve is indicative of the fraction of oil in the extracted
reservoir fluid. From these curves, it is evident that for the WAG injection process
modelled here, there is a close agreement between the KT and HG methods.

Figure 6.
Test case 3: saturation
profiles along reservoir:
(a) after 246 days and (b)
after 350 days

Figure 7.
Test case 3: sweep
efficiency and oil cut
curves
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Conclusion
In this work, a comparative study between two types of high-resolution numerical
methods were presented to study black-oil problems in one dimension. It was shown
that both the KT and HG methods can produce accurate results for all test case studied
in this work and appropriately handle complex mathematical features such as linear
degeneracy and loss of hyperbolicity. The methods also performed well in solving a
problem involving hysteresis effect.

The higher order Godunov method however, gives more accurate results
particularly near discontinuities and converges faster to a mesh-independent solution.
This can be attributed to the calculation of eigen-structure in an exact fashion. On the
other side, the KT scheme proves to be a viable scheme for practical purposes mainly
due to its relatively simpler formulation, ease of implementation and acceptable
accuracy.
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Appendix
Properties of rock and fluids
The spatial coordinate x has units of feet, and time t is measured in days. Pressure p is measured
in psi, viscosity in centipoise and the rock permeability K is measured in 0.006328 times the
value in milliDarcies. In this work, K ¼ 100 md and porosity is given by � ¼ 0:2ð1þ 10�5pÞ.

The relative permeability functions used in the first and second test cases are

krl
¼ ð1� sv � saÞð1� svÞð1� saÞ

krv
¼ s2

v

kra
¼ s2

a

But in hysteresis model, by consideration of residual saturations the normalized form of Stone’s
first model proposed by Aziz and Settari (1979) is preferred that is depicted in Figure A1.

Figure A1.
Relative permeability

curves in a two phase: (a)
oil-water system and (b)

gas-oil system
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The solution ratios are given as

RlðpÞ ¼ 0:05p

RvðpÞ ¼ 9	 10�5 � 6	 10�8pþ 1:6	 10�11p2

RaðpÞ ¼ 0:005p

Viscosities are defined by

�l ¼
0:8� 10�4p saturated liquid
ð0:8� 10�4pbÞ
ð1þ 6:78	 10�5ðp� pbÞÞ

under - saturated liquid

8<
:

�v ¼ 0:012þ 3	 10�5p

�a ¼
0:35 saturated aqua
0:35ð1þ 6:78	 10�5ðp� pbÞÞ under - saturated aqua

�

where pb denotes bubble pressure and the volume formation factors are

Bl ¼

1:0� 2:31	 10�5p ifRlðpÞ 
 0
1:0þ 1:5	 10�4p saturated liquid

1:0þ 1:5	 10�4pb

1:0þ 2:31	 10�5ðp� pbÞ
under - saturated liquid

8>><
>>:

Bv ¼

1

6:0þ 0:06p
saturated vapor

1

7:0þ 0:06p
þ

�RRv

Rv

1

6:0þ 0:06p
� 1

7:0þ 0:06p

� � under - saturated vapor

8>>>>>><
>>>>>>:

Ba ¼

1:0� 1:8	 10�5p if RaðpÞ 
 0
1:0� 3	 10�6p saturated aqua

1:0� 3	 10�6pb

1:0þ 1:8	 10�5ðp� pbÞ
under - saturated aqua

8>><
>>:

where �RRv is volatile oil ratio. Finally, the empirical parameters of the hysteresis phenomenon are

given as
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swc ¼ 0:3

sw max ¼ 0:8

som ¼ 0:05

sgc ¼ 0:3

sg max ¼ 0:6

svcr ¼ 0:0

krwm ¼ 0:4

krgm ¼ 0:6

krocw ¼ 1:0
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